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A large-Reynolds-number asymptotic theory is presented for the problem of a vortex 
tube of finite circulation r subjected to uniform non-axisymmetric irrotational strain, 
and aligned along an axis of positive rate of strain. It is shown that at leading order 
the vorticity field is determined by a solvability condition at first-order in e = 1/R, 
where R, = T/v. The first-order problem is solved completely, and contours of 
constant rate of energy dissipation are obtained and compared with the family of 
contour maps obtained in a previous numerical study of the problem. It is found that 
the region of large dissipation does not overlap the region of large enstrophy; in fact, 
the dissipation rate is maximal at a distance from the vortex axis at which the 
enstrophy has fallen to only 2.8% of its maximum value. The correlation between 
enstrophy and dissipation fields is found to be 0.19 + O(e2). The solution reveals that 
the stretched vortex can survive for a long time even when two of the principal rates 
of strain are positive, provided R, is large enough. The manner in which the theory 
may be extended to higher orders in F is indicated. The results are discussed in relation 
to the high-vorticity regions (here described as ‘sinews’) observed in many direct 
numerical simulations of turbulence. 

1. Introduction 
One of the most striking features of the structure of turbulence observed in many 

numerical simulations (Siggia 1981; Kerr 1985; Hosokawa & Yamamoto 1989, 1990; 
She, Jackson & Orszag 1990; Ruetsch & Maxey 1991; Vincent & Meneguzzi 1991; 
Douady, Couder & Brachet 1991; Kida & Ohkitani 1992; Jimenez et al. 1993; Kida 
1993) is the emergence of high-vorticity regions concentrated in tube-like structures 
which occupy a relatively small fraction (- 1 %) of the total volume, but which 
account for a much larger fraction (typically 10-20%) of the viscous dissipation of 
turbulent energy (Hosokawa & Yamamoto 1989).? The tubes have a length of the 
order of the integral scale of the turbulence, and a cross-sectional radius somewhere 
between the inner Kolmogorov scale and the Taylor microscale (Tennekes 1968; 
Vincent & Meneguzzi 1991), and are generally interpreted as vortex tubes which are 
stretched and concentrated, in a manner analogous to the familiar Burgers vortex, by 
the local straining associated with the turbulence field. The radius of the Burgers vortex 
subjected to a stretching rate y is S - (v /y) i ,  and if y is a typical turbulence strain rate, 
then 6 is of the order of the inner Kolmogorov scale. 

t These percentages depend on the threshold that is used to define ‘high vorticity ’. If this threshold 
is lowered, then both the volume fraction and the fraction of dissipation increase. 
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Vortices have been described as the ‘sinews’ of fluid motion (Kuchemann 1965; 
Saffman & Baker 1979), a term that now seems particularly apt for the above 
concentrated vortex tubes. Just as sinews serve to connect a muscle with a bone or 
other structure, so the concentrated vortices of turbulence serve to connect large eddies 
of much weaker vorticity; and just as sinews can take the stress and strain of muscular 
effort, so the concentrated vortices can accommodate the stress associated with the low 
pressure in their cores and the strain imposed by relative motion of the eddies into 
which they must merge at their ends. Thus the term ‘sinews of turbulence’ seems well- 
chosen to describe these high vorticity regions;? hence the title of this paper. 

The idea that the dissipative structures of turbulence may be well represented by a 
random distribution of strained vortex sheets or tubes goes back to Townsend (1951) 
(see the discussion in Batchelor 1953, 57.4). Suppose that the background straining 
flow has the form 

u = (ax, pv, YZ), (1.1) 

where a + p + y = o ,  a < O < y ,  p > a .  (1.2) 

If p < 0, then there is one positive principal rate of strain (y) ,  and there is a tendency 
to form vortex tubes aligned with the corresponding axis of strain ( 0 2 ) ;  we shall 
describe this type of strain as axial strain. If /3 > 0, then there are two positive principal 
rates of strain 03 and y), and there is a tendency to form vortex sheets in the plane of 
the corresponding axes of strain (Oy,  Oz) ;  we shall describe this type of strain as biaxial 
strain. If /3 = 0 and 01 = - y, then of course we have the case of plane strain. We may 
characterize the different types of strain by the single strain parameter 

as follows: 
h = 0, axisymmetric axial strain; 

0 < h < 1, axial strain; 

A =  1, plane strain; 

1 < h < 3, 

h = 3, 

h > 3, 

biaxial strain with 0 < p < y ;  

axisymmetric biaxial strain (p = y ) ;  

biaxial strain with p > y.  

Note that the determinant of the rate-of-strain matrix is given by 

= iY3(1 - ~ 2 ) .  (1.4) 
It is well known that .PY < 0, the overbar denoting the ensemble average, in 
homogeneous isotropic turbulence, so that there would appear to be a statistical bias 
towards regions of biaxial strain. However, as pointed out by Jimknez (1992) and Kida 
(1993), the presence of a strained vortex itself modifies the local strain field, tending to 
convert axial strain to biaxial strain, so that care is needed in this inference. Moreover, 
vortex sheets are in any case subject to Kelvin-Helmholtz instability, an instability that 
is modified but not completely suppressed by strain (Lin & Corcos 1984); this 
instability leads to spiral wind-up of a vortex sheet and to the formation of a row of 
parallel vortex tubes of spiral structure. Spiral structures have been considered as 

7 The alternative term ‘worms’ has been suggested by Yamamoto & Hosokawa (1988). We prefer 
the term ‘sinews’ for the reason given above, and also because vortex tubes, unlike worms, do not 
have clearly defined end-points. 
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candidates for the typical dissipative structures of turbulence (Lundgren 1982; Moffatt 
1984, 1993) but clear evidence for spiral structures from direct numerical simulations 
(DNS) of turbulence is not yet available. 

Vortex tubes formed either in regions of axial strain or (via the Kelvin-Helmholtz 
mechanism) in regions of biaxial strain are in general represented by fully nonlinear 
solutions of the Navier-Stokes equations, the nonlinearity arising through convection 
of the (generally non-axisymmetric) vorticity field o by the rotational velocity u (where 
o = V xu ) .  Only in the axisymmetric case @ = a) is an exact solution of the 
Navier-Stokes equation of finite circulation available ; this is the Burgers vortex for 
which o = (0, 0, w(r)) with 

Here, r is the total circulation associated with the vortex. If a < /3 < 0, and if the 
Reynolds number 

is very small, so that self-induced convection of vorticity is negligible, then the 
linearized vorticity equation admits a unique solution similar to (1 3, namely 

R, = rIv (1 4 

so that iso-vorticity contours w = const. are ellipses with principal axes aligned with 
the principal axes of strain (see Appendix A). 

Study of the effects of nonlinearity for larger R, was initiated by Robinson & 
Saffman (1984) (see also Saffman 1992,s 13.3), who developed a double series solution 
in terms of the Reynolds number (still assumed small) and the strain parameter A, 
representing the departure from axisymmetry in the imposed strain field (1. l), and also 
assumed small; they also provided numerical evidence for the continued existence of 
such vortices for Reynolds number up to 100 and values of h up to 0.75. In turbulence, 
we are particularly interested in large values of R, (JimCnez et al. 1993 provide evidence 
for a scaling law R, - Ref where Re is the turbulent Reynolds number based on the 
Taylor microscale) and also in the full range of values of A, not only the range 0 d 
h < 1, but also the range h > 1 (i.e. /3 > 0) since, as will emerge, strong vortex tubes 
can survive for a very long time even in regions of biaxial strain (see $5). 

Renewed interest in this problem has been kindled by two numerical studies: first 
that of Buntine & Pullin (1989) who studied the time-dependent merger of two vortices 
in a strain field with h = f and R,/2n: in the range 10 to 1280; and second, that of Kida 
& Ohkitani (1992, hereafter referred to as K092) who (in the Appendix to their paper) 
analysed the stretched vortex problem numerically and computed not only steady iso- 
vorticity contours for h = + and a range of values of R, up to 500, but also the contours 
of constant energy dissipation rate @ = 2vsijsij, where sij is the rate-of-strain tensor 
(including both the background strain field and the contribution from the vortex). 
KO92 showed that (i) the principal axes of the contours w = const. rotate anticlockwise 
towards the lines x = + y at 45" to the axes of strain Ox, U y  as R, increases, and at the 
same time tend to become more circular in form; (ii) the contours of the dissipation 
function @ evolve in a rather complex manner as R, increases, but the function always 
exhibits two maxima on or near the line x = - y  and symmetrically displaced from the 
vortex centre. A similar double-peaked structure of the dissipation function was noted 
in the high-vorticity regions (sinews) of a DNS at Reynolds number (based on the 



244 H.  K. MofSatt, S .  Kida and K. Ohkitani 

Taylor microscale) Re z 186 (K092, figure 66); in this numerical experiment, 
concentrated vortices with values of R, in the range 50-100 were observed. 

It is obviously important to understand the reasons for the changing structure of 
both vorticity and dissipation fields as R, increases, and this is the aim of the present 
paper. We approach the problem as one in high-Reynolds-number asymptotics. At 
leading order, the iso-vorticity lines are circular; the distribution of w as a function 
of radius r is not determined at this order, but is determined by a solvability condition 
at the next order of approximation. The same phenomenon was encountered by Neu 
(1984) in a study of the unsteady dynamics of vortices subjected to plane strain (the 
case h = 1 in our notation). Here we solve the problem fully to order c = 1 / R ,  at 
which level the results depend on F and h only through the combination el = d. We 
present the asymptotic form of the vorticity field to this order in 92, and in $3 we 
analyse the structure of the dissipation field @. There are indeed interesting, but fully 
comprehensible, changes in the structure of this function as revealed by a study of its 
saddle points and their connections. The results are fully compatible with those of 
K092, and permit confident application of the asymptotic theory for all values of A, 
and for arbitrarily large R,. In $4, we extend the theory to the next level of 
approximation, O(e2), and indicate the procedure for extension to still higher order (the 
solvability condition at order c3 is obtained in Appendix B). In $5 ,  we consider 
particular problems that arise when h > 1. Finally, in $6, we assess the significance of 
the results in the framework of high-Reynolds-number turbulence. 

2. Stretched vortex: asymptotic solution for R, % 1 

associated with the vortex, with vorticity 
Let u,. = a$/ay) and uy( = - a$/ax) be the additional velocity components 

au, au, 
w = ax-ay = -V". 

We suppose that the total circulation 

is finite, and that 

The steady vorticity 

S =  l/R,= v / T <  1. 

equation that we wish to solve is 

aw aw 

aY 
(ax + u,) x+ (Py+ u )- = y o  + vv2w. 

The configuration is sketched in figure 1 ,  for (a)  axial and (6) biaxial strain regions. 
Anticipating that, even when a + P, the radial lengthscale is still of order 6 = (v /y) i ,  

and the maximum velocity in the region of the vortex is of order T/6, let us introduce 
dimensionless variables 

(X*> v*) = (x, Y ) / &  (a*, P*) = (a, P)/y, $* = $/T. (2.5) 
Substituting in (2.4) and dropping the stars, we obtain the dimensionless equation 
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I 

-l*: - -+: - 
1 1  

FIGURE 1. Sketch of the configuration considered. Perspective view of vortex w = (0, 0, w(x, y ) )  
stretched by the flow U = (ax,/ly,yz), and (below) cross-section of the flow in the (x,y)-plane. (a) 
Axial strain. (b) Biaxial strain. 

Note that now cx+p = - 1 and that the third (dimensionless) strain rate is + 1. 
In the dimensionless variables adopted here, the time to = S2/T characteristic of the 

circulating motion around the vortex becomes of order unity, and the time t,, = S 2 / v  
characteristic of viscous diffusion over a scale 8 becomes of order R,. 

It is convenient to adopt plane polar coordinate ( r ,  0) with x = rcos0,y  = rsin 8. 
Then (2.6) may be transformed to 

where (2.8) 
r c ?  
2 ar 

Lo = 1+--+v2, 

(2.9) l - 2  ’( ar ao a )  
a 

L -- cos28r--sin28- 

and where now h = P-a, so that 

u = -i(l +A) ,  p = -f(l -A) .  

This form of the equations proves most convenient for subsequent analysis. 
We seek a solution of (2.7) in the form 

$h= (Iro+t*,+s2y!r2+ ..., 
with corresponding expansions for the velocity components 

u=- -  1 a$h v = - -  w 
r a@’ C3r ’ 

(2.10) 

(2.11) 

(2.12) 
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At order eo, we obtain the Euler equation 

(2.13) 

(2.14) 

so that wo = F(k0) for some function 9. If we assume that the flow v+bo has a single 
stagnation point at r = 0, the streamlines being closed curves around this stagnation 
point, then it seems highly probable that the only solutions of (2.14) in an unbounded 
fluid and with localized vorticity are of the form v+bo = $o(r), i.e. the streamlines (and 
so the iso-vorticity lines also) are circles r = const. Certainly this is consistent with the 
trend noted by K092. We note moreover that it has been recently shown by 
Linardatos (1993) that in the closely related problem of finding magnetic equilibria in 
a perfectly conducting fluid by the method of magnetic relaxation (Moffatt 1985), the 
minimum-energy states with a single null-point do indeed have circular field lines. 

At any rate, we shall restrict attention to this class of solutions of (2.14), i.e. we 
assume v+bo = $,(r) so that 

(2.15) wo(r) = - $: - r-'$h, 

and the associated velocity components are 

uo = 0, 0, = -$h. (2.16) 

Here, and subsequently, the prime is used to denote differentiation with respect to r.  
The function v+bo(r) is not determined at this level of approximation. 

Now equating terms of order E in (2.7), we obtain 

Averaging over 8, we obtain the solvability condition 

Looo = 0, 

and this has solution, finite at r = 0 and vanishing at r = 00, 

(2.18) 

(2.19) 

where we have normalized so that the total (dimensionless) vortex strength is unity 
(consistent with the dimensional constraint (2.2)). Thus, despite the non-axisymmetry 
of the strain ( A  > 0), the vorticity field at leading order is precisely that of the 
axisymmetric Burgers vortex and is independent of the strain parameter A. This 
remarkable result has already been obtained by Neu (1984) for the particular case of 
plane strain ( A  = 1). The result is quite subtle because it means that viscosity has an 
important residual effect even in the limit of infinite Reynolds number. In this respect, 
the result (2.19) is reminiscent of the Prandtl-Batchelor theorem (Batchelor 1956) for 
two-dimensional steady flow with closed streamlines, which establishes a similar 
residual effect of viscosity (in establishing a uniform vorticity distribution outside 
boundary layers) in the limit v + 0. By analogy with that situation, we may conjecture 
that it will take a time of order Ri to establish the steady state (2.19) starting from an 
initial condition in which w is localized within an area of order unity but otherwise 
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r 

FIGURE 2. The functionf(r) determined by (2.25), (2.28) and (2.29). The dashed curve shows the 
required convergence of rzf(r)  to a constant as r +- co. 

arbitrary (Rhines & Young 1982). (A residual disturbance approximately constant on 
streamlines $ = const. may persist on the longer timescale O(R,); the time-dependent 
problem (cf. Buntine & Pullin 1989) deserves further study in this respect.) Note that 
the circulatory velocity corresponding to (2.19) is 

1 
v,,(r> = ---(I 2xr -e-r2/*), 

and the streamfunction is 

Returning now to (2.17), and using (2.18), we have 

i a  
r a6 
-- (wh $, + v,, w,) = AL, w,, = +hrw; cos 26. 

Hence, 

for some function q(r). Hence we may set 

where 

on V2$, - w; = - %Ar2wh sin 26 + q(r), 

$l = AJTr) sin 26 + g(r),  

f" + r - y  - 4r-2f = (f- ir2) r (r)  

with 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

The function g(r) is not determined at this level, but will be shown to be zero (see 
the final paragraph of this section) on the basis of a solvability condition at order e2. 

q(r) = - 1 ++r2-&r4+ . . . , (2.27) 
and, by elementary techniques, the expansion forflr) may be found in the form 

f ( r )  = ar2++&-a)(r4-&r6+ ...), (2.28) 
where the constant a is to be determined in such a way that the outer boundary 

(2.29) 
condition 

r2f(r)+C as r + a  
is satisfied (ensuring that the flow is irrotational as r+  a). Numerical solution of (2.25) 
determinesf(r) (see figure 2), and the constants a and C: 

(2.30) 

For small r ,  T(r)  has the Taylor expansion 

a = -0.381475... , C = - 17.4723 ... . 
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FIGURE 3 .  The vorticity functions 4n00(r) (solid line), -sZ(v) (dashed line) defined by 
(2.19) and (2.34). 

Note that f i r )  < 0 for all r > 0, and that Ar) has a single well-defined minimum at 
r = rl z 2.94 where f i r , )  z - 1.10. The convergence of r’ffor large r is rapid; in fact, 
it is easily shown that 

c - i r 4  e-r214 as r+m. (2.3 1) 

Assuming for the moment that g(r)  = 0, we now have @ to order s in the form 

@ = @,(r) + e , f ( r )  sin 28, (2.32) 

where el = eh. The corresponding vorticity is 

w = wO(r) +el Q(r) sin 28, 

Q(r) = - ~ ‘ ( r f ’ ) ’  + W 2 f  = (ir2 -f> 7 where 

(2.33) 

(2.34) 

using (2.25). Clearly Q(r) < 0 for all r (figure 3). Note the asymptotic behaviour 

Q(r) - -i(1-4a)(r2-&r4+ ...) for r 6 1, (2.35) 

and Q ( r >  - -&r4 e-r414 as r+m. (2.36) 

We note a potential difficulty here, in that 

(2.37) 

so that the ‘leading’ term wo(r) in (2.33) is not dominant for large r .  However, it is 
dominant provided 

r2 6 2(ne1)4, (2.38) 

and when r2 - 2(nel)-1, both wo(r) and el Q(r) are of order (47c)-l exp [ -i(7.te1)p4], i.e. 
transcendentally small. We discuss this point further in 9 5.  

The streamlines are now given, to order el, by 

r = ro + el r,(8), (2.39) 

where, by substituting in (2.32) and equating terms of order el, 

(2.40) 
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FIGURE 4. Contours yk = const. (thick) and w = const. (thin) obtained from (2.32) and (2.33) with 
el = 0.005. Note that the streamlines are quite nearly circular, whereas the iso-vorticity lines are 
more strongly flattened. (Contour levels: $ = -0.015n (n = 1,2,. . . ,7); w = w,,, + (wm, , -umin)n/7  
(n = 1,2, .  . ., 6); w,,, = 7.938 x lo-'.) = -4.737 x 

Thus, the streamlines are ellipses with major axes on 0 = 3n/4, 7n/4 and minor axes 
on 0 = n/4, 5n/4 (because f (ro)/vo(ro) < 0); the eccentricity of these ellipses is maximal 
at ro z 3.9. 

Similarly provided el 4 1 and r2 4 2(ne1)-i, the lines of constant vorticity are given 
by 

r = Yo + rw(0), (2.41) 

where (2.42) 

Again, these are ellipses with the same orientation of major and minor axes as above, 
a property that is evident in the iso-vorticity plots of KO92 (figure 13d-f) for R, 2 
100. The tendency of the principal axes of the iso-vorticity ellipses to rotate in a 
counterclockwise sense from the principal axes of strain (x = 0, y = 0) was noted by 
Robinson & Saffman (1984); the present analysis shows that the total angle of rotation 
asymptotes to in  as R,-+ co. 

Although the principal axes of streamline ellipses and iso-vorticity ellipses coincide, 
the curves do not themselves coincide because the eccentricities at given r,, are clearly 
different in the two cases. At order e, vorticity is no longer constant on streamlines; the 
slight mismatch is accommodated by the strain field and by viscous diffusion. The 
situation is illustrated for the case el = 0.005 in figure 4, which shows contours of $ 
and w based on (2.32) and (2.33). Note that, despite the quite strong ellipticity of the 
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iso-vorticity lines, the streamlines settle down rapidly to circular form outside the 
vortex core. 

Proof that g(r) = 0 
Consider now the terms of order s2 in (2.7); these give 

All the terms in AL, w1 and r-l a($l, wl)/i3(r, 8) are proportional to sin 28 or cos 28 (for 
details see $4 below), and so give zero when integrated from 8 = 0 to 8 = 27c. Hence, 
integrating (2.43) over 8 gives the solvability condition 

Lo( - V") = 0 (2.44) 

using the vorticity w1 = -V2$, with $1 given by (2.24). It follows that 

VZg = k e-r2/4 (2.45) 

for some constant k .  The normalization condition coupled with the zero-order solution 
(2.19) now implies that k = 0. Hence V2g(r) = 0 and the only solution finite at r = 0 is 
g = const.; since an additive constant in the streamfunction does not affect the flow, 
we may clearly take g = 0, as anticipated above. 

3. Spatial distribution of viscous dissipation 
Let sii be the (dimensionless) rate-of-strain tensor, with elements 

01 + au,/ax ;(aux/ay + au,/ax) o 

(3.1) ( 0  0 9- 1 
{sU> = ;(au,/ay + au,/ax) p + a q a y  

Then the rate of viscous dissipation is given by 

Q, = 2sii sii = 2[D + s2('A2 + %)I, 

D = 2$&i +;(Ax - $,,I2 - 2% $xy, 

( 3 4  

where (3-3) 

and, as before, el = As. (The dimensional dissipation rate is given by v(T/&)W = 
( y 2 P / v )  @.) The term ,'(;A2 +;) in (3.2) comes from the background strain field and is 
the uniform value of ;Q, far from the vortex; hence D represents the excess of +Q, over 
this background values due to the presence of the vortex. Converting to polar 
coordinates, (3.3) becomes 

D(r, 8) = ;($,, - r-l$,. - r-2$1C.ee)z + 2r-2($r1C.e- r-'$,J2 

-sl($rr-r-1$r-r-2$e1C.e) sin28-2el r-l($re-r-l$e) cos28. (3.4) 

It proves necessary to consider terms up to order s2 in this expression, in order to get 
a uniformly valid first approximation to D. Substituting $ = $o(r) + slf(r) sin 28 + 
s2$2(r, O), we obtain 

D(r, 8) = :(H(r))2 - s1 H(r)( 1 - G(r)) sin 28 + c?[(;G2 - G )  sin2 28 + (:F2 - F )  cos2 2/31 

+s2H(r)G2(r ,8)+ O(s3), (3.5) 
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where 

r 

FIGURE 5. The functions F(r) (chain-dashed), G(r) (solid), 32xH(r) (dashed) 
given by (3.6),  (3.7) and (3.8). 

and GAr, 0) = $zrr - r-l$2r - ~ - ~ $ 2 0 0 *  (3.9) 
The functions F, G ,  H are shown in figure 5. Note the following asymptotic behaviour: 
for small r ,  

F(r) - 4a+(i-a)r2-&(i-a)r4+ ..., (3 .10~)  
G(r) - 4a+(i-a)r2-&(i-u)r4+ ..., (3.10b) 

(3.10~) H(r)  - - ( r 2 - i r 4 +  ...); 
1 

32x 
and as r+m. 

F(r) - -- 12C+ r4 0(, .2  e-r2/4 1, (3.11~) 

(3.11 b) G(r) - y4 + O(r4 ePr2I4), 

H(r) - - xr2 + o(e-r2/4). (3.11~) 

1 2 c  

The presence of the small factor ( 3 2 ~ ) ~ '  w 0.01 in (3.10~) is rather striking; looking at 
the structure of (3.5) suggests that, for numerical purpose, 32x6, might be a more 
appropriate expansion parameter than el (see the asymptotic behaviour of D(r, 0) as 
r+O,  obtained below (3.15)). Note also that 

H'(r) = 0 and H(r) = Hmas M 0.0237 at r = r, w 2.67, (3.12) 

and that G(r) < 0 for all r .  Note finally that the functions F(r) and G(r) are almost 
identical for r 5 1, where the first two terms of (3.10a, b) give an excellent 
approximation to both functions. 

as r + O ,  k2 = O(r2) and so G ,  = O( l), (3.13 a)  
and as r +  00, $, = O(rP2) and so G, = O(r-4). (3.13b) 

The function $2(r, 0) is determined in $4. All we need note here is that 
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-2 0 2 -2 0 2 

FIGURE 6. Contour plots (a) of the inner dissipation fuzction q26(?, 0) defined by (3.15) and 
(b) of the outer dissipation function ty2D(i, 0) defined by (3.19). 

The structure of the dissipation field (3.5) may be best understood by considering 
three regions. 

(i) r = o(& 
Defining an 'inner variable' 

t = (32ns,)-b, (3.14) 

the leading-order contribution to D in the region where i = O( 1) is 

6(?, 0) - 4[+t4 - (1 - 4a) t2 sin 28 + 4a(2a - l)], (3.15) 

the final term coming from the third term of (3.5). The need to retain terms of order 
s2 in (3.5) should now be clear; note however that the final term of (3.5) makes no 
contribution to (3.15) since 

e2H(r) G2(r,  8) = O(2r2)  = O(e4i2) (3.16) 

in this region. The function q26(t, 6') defined by (3.15) has universal form independent 
of both h and c = 1/&; its contours are shown in figure 6(a). It is minimal at r^ = 

(1 -4a)i z 1.59, 6' = n/4, 5n/4, and there 

D,,, = - 0.56;. (3.17) 
,. 

(ii) r = o(& 
Similarly, defining an ' outer variable ' 

r" = (7C& (3.18) 

we find that in the region where r" = O(l), the leading contribution to (3.5) is 

b ( ~ ,  0) - .53+~"-~ - r"-2 sin 26'1. (3.19) 

Again, c;'b(r,8) has universal form; its contours are shown in figure 6(6). It is 
minimal at r" = 1, 8 = n/4, 5n/4, and there we again find 

Dmi, = -0.5s:. (3.20) 
- 
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(Actually, as noted below (2.37), the asymptotic solution is suspect for r 2 e;i, and is 
certainly invalid in the outermost region r % e;;; this is discussed further in §5 and in 
Appendix A.) The results (3.17) and (3.20) imply that the corresponding minima of 0 
are given by 

pmi, = 7jS 3 2  , (3.21) 
independent of A. 

(iii) r = 0(1) 

When r = O(1), it is sufficient to retain the first two terms of (3.5), i.e. 

D(r, 8) N D,(r, 8)  = $(H(r))' -el H(r) (1 - G(r)) sin 28. (3.22) 

This function is symmetric about the diagonal lines x = k y ,  and since H(r)( l  -G(r)) 
> 0 for all r > 0, D is maximal as a function of 8 on x = -y ,  minimal on x = y .  In the 
limit el = 0, the contours Dl(r,  8) = const. become circles r = const. (a behaviour that 
may be seen both in the outer limit ?+ 00 of (3.15) and in the inner limit r"+ 0 of (3.19)) 
and D, is maximal where H(r)  is maximal, i.e. at r = rc M 2.67. This maximum value 
is thus, asymptotically, 

D,,,, - $H2,,, M 2.808 x lop4. (3.23) 

The perturbation term in (3.22) breaks this circular symmetry, and, provided we 

r = Yo + rD(8), (3.24) 

avoid the critical circle r = r,., the contours are given to first order in el by 

where, by substituting in (3.22) and linearizing, 

(3.25) 

These contours are ellipses, with major axis x = - y  for H'(ro) < 0, i.e. ro > r,, and with 
major axis x = y for H(rJ > 0, i.e. ro < r,. 

This approximation is clearly invalid near yo = r,  where H'(ro) = 0. Near this value, 

H(r) % H,  +:(r - rC)'H:, 

where He = H(r,) ,H; = H"(r,), so that (3.22) becomes 

(3.26) 

Dl(r, 8) iK +$(r - re)* H, H: -el H,( 1 - G,) sin 20, (3.27) 

and the contour 

D = $e -el H,( 1 - G,) = (0.028 - 2 . 6 ~ ~ )  x lo-' = D,, (3.28) 

say, is given by 
1 -G, 

( r  - r,)' = 2e1 (1 - sin 28). 
IH,I 

(3.29) 

This is a separatrix joining saddle points at r = re, 8 = ~ / 4 ,  5x/4. Maxima of D occur 
at r = re, 8 = 3x14, 7 ~ / 4 ,  and there 

D,,, = fe + el H,( 1 - G,) = (0.028 + 2 . 6 ~ ~ )  x lo-'. (3.30) 

There is a 'cat's eye' structure with width (at 8 = 3n/4, 7n/4) given from (3.29) by 

9 

(3.31) 

FLM 259 
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-5 0 5 -5 0 5 

-5 0 5 

FIGURE 7. Contour plots of the dissipation function D(r, 0) defined by (3.32). The maxima of D are 
marked with * and the (global) minima with x . The contour levels are equally spaced at one-seventh 
of the difference Dmaz-Dmin. The separatrices D = Do and D = D ,  are also included (thick lines), 
and the plots are shaded light grey where min (Do, D,) < D < max(Do, 0,) and dark grey where 
D > max (Do, 0,). (a) el = h/R, = 0.01 (Do > DJ, (b) el = 0.005 (Ds > Do), (c) el = 0.0025 (D, > Do), 
(d) el = 0.001 (D, > Do). Compare with the computed contours in figure 14(c-f) of K092. 

All of these features may be observed in figure 7 ( d )  which shows contours of the 
function (3.32) below for el = 0.001. 

The above discussion makes it clear that a uniformly valid approximation to 
D(r, 8) for small .c is given by simply omitting the term .c2H(r) G2(r,  8) in (3.5) which is 
always dominated by other terms. Thus 

D(r, 0) - +(H(r))' - el H(r) (1 - G(r)) sin 28 

+.c; [(~G2-G)sin228+(+F2-P)cos228]. (3.32) 

Contours of this function are shown in figure 7 for el = 0.01, 0.005, 0.0025, 0.001. 
These values are chosen to enable comparison with the contours obtained numerically 
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3 

(x 10-4) 
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D(r, d4)  
1 

0 

2 4 6 8 
r 

-1 
0 

FIGURE 8. The function D(r,x/4) defined by (3.34) for various values of el. A saddle point of 
D(r, 0) occurs very near the point where D(r, x/4) is maximal. When el x 0.006 56, the value D, at 
this saddle equals Do x 2.69~;. 

and presented in figure 14(c-f) of K092. The value el = 0.01 (for which 32m1 z 1) is 
the largest for which the present asymptotic theory can reasonably be applied. The 
separatrices 

through the origin and D = D, through the other saddle points on x = y ,  are included 
in each case, and the contour plots are shaded light grey in the region where min (Do, 
0,) < D < max (Do, Ds), and dark grey where D > max (Do, 0,). The following points 
should be noted: (i) the inner region (i = O(1)) is best seen in figure 7 ( d )  (el = 0.001) 
(compare with figure 6a) and the outer region is best seen in figure 7(a )  (el = 0.01) 
(compare with figure 6b); (ii) the cat's eye pattern and the ellipses both inside and 
outside are best seen in figure 7 ( 4 ;  (iii) in all cases, the regions (dark grey) of strong 
dissipation are set distinctly off-centre on the diagonal x = -y ,  very much as revealed 
in the corresponding computations of K092. 

There is a change of topology of these contours as el increases from very small levels. 
This may be understood from consideration of the function 

(3.34) 

shown in figure 8 for various values of el. The change of topology occurs when el = 
elle z 0.00656, at which value Do = D,. The corresponding contour plot is shown in 
figure 9. There are further interesting changes in the topology of D(r,0)  for larger 
values of el, but these lie beyond the range of validity of the asymptotic analysis, and 
are therefore not considered here. 

The most striking property of the field of dissipation (3.32) is that, as el+O, the 
dissipation becomes quite sharply concentrated near the radius r = 2.67 at which H(r) 
is maximal. At this radius, 

D = Do = 4 ~ ( 2 a -  1) 6; z 2.69~; (3.33) 

D(r, n/4) = +(H(r))' - el H(r)  (1 - G(r)) + e;(+G' - G) 

so that the enstrophy (u,(r))' is only 0.028(~(0))', i.e. 2.8 % of its maximum value. This 
means that the region of large enstrophy and large dissipation are effectively non- 
overlapping, an important conclusion in the turbulence context (see 96 below). The 0- 
averaged enstrophy and dissipation, correct to order e, are given by 

(w ' )  = (w,,(r))' = (167c2)-l e-r2/2, 2(D) = (H(r))', (3.35) 
9-2 
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FIGURE 9. Contour plot of D(r, 0) for the critical case el = elC 2 0.00656 (Do = Ds). 
Shaded area as in figure 7. 

and it is not hard to verify that 

S:(H(r))lrdr = 1: (w0(r))'rdr = (16n2)-'. (3.36) 

It is also easy to verify that at r = 2/2,  

and that 

and 

1; ' ( o ~ ~ ( r ) ) ~ r  dr = 0.632 

~ ~ " ( H ( r ) ) 2 r d r  = 0.0128 (H(r))'rdr. I: 

(3.37) 

(3.38) 

(3.39) 

Hence 63.2% of the total enstrophy associated with the vortex lies within the radius 
r = 4 2 ,  whereas 98.7% of the viscous dissipation occurs outside this radius. 

The correlation between the fields wo(r)  and H(r) is given by 

(3.40) 
1 

= (1; w: r dr 1; EEZr dr) 

This integral can be evaluated, with the result 

p1 = - 1 +21n2 = 0.386. (3.41) 
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(2ty@,,, ( 2 W  @,,,, 

61 From (3.32) From (3.30) Numerical From (3.32) Numerical 

(a) 0.01 3.00 2.98 2.90 1.50 1.50 
(b) 0.005 5.76 5.73 5.57 1.50 1 .so 
(c)  0.0025 15.5 15.4 15.1 1.50 1 s o  
(d) 0.001 79.1 78.1 77.3 1.50 1.50 

TABLE 1. Maximum and minimum dissipation rate for the case h = +. The numerical values were 
obtained by integrating (A3) by the finite difference method as in KO92 with a larger domain 
(-15 < x,y < 15) and a finer mesh (Ax = Ay = 0.25). 

The correlation between the enstrophy field (w(r ,  0))2 and the dissipation field D(r, 0) 
is given, correct to order e, by 

1: w: P r  dr 
1 + O(e2). (3.42) 

pz = (1: wt  r dr 1; H4r dr)' 

The integrals have been evaluated numerically, with the result 

+ O(€2) 
1.157 x lop6 

pz = [(2.005 x x (1.882 x lo-')]; 

= 0.19 + O(e2). (3.43) 

The results (3.41), (3.43) should be testable through appropriate manipulation of DNS 
data.? 

Finally, we note some numerical comparisons. Table 1 shows the maximum and 
minimum values of @/2e2 obtained from the function (3.32) for the case A = f ,  together 
with the corresponding figures computed for this case by K092. The minimum values 
are in perfect agreement. There is however a systematic difference of about 10% 
between the maxima given by the asymptotic theory and the maxima previously 
computed. The reason for this difference is that, for the larger values of el, the 
asymptotic theory is perhaps not sufficiently accurate, while for the smaller values of 
el, the numerical procedure of KO92 is slow to converge. We have repeated the 
computation of KO92 for the case A = i, R, = 500 (i.e. el = 0.001) using a larger 
domain and a finer mesh, and the discrepancy between the numerical solution and the 
asymptotic theory is indeed reduced (see Table 1). 

4. Higher-order asymptotics 
Let us now briefly consider the problem posed by (2.43) at order 2. As shown at the 

end of $2, the solvability condition for this equation yields the result g(r)  = 0. Then, 
(2.43) simplifies to the form 

a 
- ae (w i  $, + v,, w,) = 2Av,(r) M(r) sin 26'+ 4h2v,(r) N(r) sin 48, (4.1) 

t As pointed out by a referee, p2 is zero for a Rankine vortex (for which the enstrophy is non-zero 
only for r < 6 and the dissipation is non-zero only for r > 8). On the other hand, ps = 1 for a vortex 
layer in which w = (0, 0, o(y ) )  and dissipation is proportional to enstrophy (Tanaka & Kida 1993). 
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where 
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(4.2) 
r 

M(r) = - (a’’ + ( i r  + r-’) 0’ + ( 1  - 4rP2) SZ), 
2v,(r) 

Integrating (4.1) with respect to 8 and dividing by uo(r), we obtain 

V2$,-r,(r) $2 = hM(r)cos28+h2N(r)cos48+g,(r), (4.4) 

for some function g2(r). 
The solution of (4.4) may be sought in the form 

$,(r, 8) = h2$,,(r) + hf,(r) cos 28+ h2f,(r) cos 48, (4.5) 

where 

and 

L, f ,  = fi + r-y, - 4r-2f, = 7 f 2  + M(r), 

L,f, = 7; + r-y, - 1 6r-y4 = 7 f ,  + N(r). 

The function $,, is determined by a solvability condition at 0(c3) (see Appendix B). 
Note that the equation LJ= 0 has linearly independent solutions r2 and r-’, while the 
equation L, f = 0 has linearly independent solutions r4 and r-,. 

Now, using (2.28) and (2.35), the behaviour of M and N for small r may be 
calculated, and is 

Similarly, from (2.31) and (2.36), we find that 

M(r)  N in(1-4a) r2, N(r) - -+~(1 -4a)~r~ .  (4.8) 

M(r) - -&nr8 ecr2l4 , N(r) - -Lnr8  256 e-r2/4 as r - t  co. (4.9) 

These properties guarantee that solutions of (4.6) and (4.7) may be found with the 
properties 

f 2 - a , r 2  as r+O, f 2 - C , r - 2  as r+co, (4.10) 

f 4 - a 4 r 4  as r+O, f ,  - C4rP4 as r+co. (4.1 1 )  

Hence the solution (4.5) is uniquely determined. Again it has the property that the 
associated vorticity w2 = - V2$, is exponentially small as r + co. 

The streamfunction @ = $, + + c2$, now has the form 

$ = $,(r) + chflr) sin 28+ e2(h2$,,(r) + hf2(r) cos 28 + h2f4(r) cos 48) + O(c3). (4.12) 

Note that $ now involves E and h independently, and not just through the combination 
el = eh. Moreover, the symmetry about the diagonals x = f y  is clearly broken at order 
2, and this will carry over to the dissipation function also. 

This procedure may now be carried to higher orders in c if required. The main point 
to note here is that a well-defined procedure exists. This lends confidence to our claim 
that the essential features of the flow are well captured by the first two terms of the 
expansion (2.1 1) when E is sufficiently small. 

5. The case h > 1 (biaxial strain) 
The asymptotic solution that we have obtained in 92 appears to be valid whether 

h < 1 ,  or h > 1 ,  provided merely that cl = ch 4 1 .  This suggest that concentrated 
vortices should be able to survive even in a biaxial strain field where both p and y are 
positive. 
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There are two difficulties here, the first of which we have already noted in relation 
to the behaviour (2.37) of the ratio Q ( r ) / q , ( r )  for large r .  The fact that +?(r)l eventually 
becomes of the same order of magnitude as wo(r)  means that the expansion (2.11) 
cannot be uniformly valid all the way to r = 00. However, at the large values of r (of 
order €;i) at which it breaks down, the vorticity is already of order exp [ -;(7te,)-i], i.e. 
so small that the non-uniformity is of no consequence. (The situation is a little 
reminiscent of the breakdown of the ‘inner solution’ for Stokes flow past a sphere, a 
breakdown that can be rectified by the use of matched inner and outer expansions.) At 
very great distances ( r  % €1;) the solution should match to a solution of the linearized 
form of (2.4). We show, in Appendix A, that the unique stable steady solution of this 
linearized equation is the solution (1.7). Hence in the outermost regions, the principal 
axes of the iso-vorticity ellipses must rotate back towards the principal axes of strain 
(Ox, OY). 

The second difficulty arises specifically for h > 1. Far from the vortex core, the 
vorticity is exponentially small; moreover the imposed strain field (ax, py, yz) 
dominates (at sufficient distance) over the velocity vo(r) - T/27tr associated with the 
vortex. In this ‘far field’, the vorticity behaves like a passive scalar and when p > 0, it 
is convected to y = 5 co (the linearized solution (1.7) is not available when /3 > 0). The 
strain dominates over uo(r) at a (dimensional) distance 

r - € 3 ~  (5.1) 

from the vortex, and at distances greater than this a strictly steady solution with 
/3 > 0 is apparently not possible. 

However, the vorticity is transcendentally small in this region so that the rate of 
reduction of the circulation T(r) inside a circle of radius r - €-G due to this ‘stripping’ 
mechanism? is likewise transcendentally small. In order of magnitude, when 
(r /S)2 - €-l, 

say, so that the timescale t ,  of this process is 

which is effectively infinite when -g 1. Thus, although in a strict sense equation (2.4) 
has no solution vanishing at infinity when ,8 > 0, the ‘solution’ that we have obtained 
in $2 is quasi-steady when /3 > 0, with a rate of loss of circulation (by stripping) that 
is so small as to be effectively negligible. Our conclusion is that the stretched vortex can 
survive for a time that is effectively infinite even when h > 1 (i.e. p > 0). 

A fortiori, the same remarks apply to the plane strain situation h = 1 (i.e. p = 0). In 
this case, vorticity can be lost to y = k co by viscous diffusion which (at large distances 
from the core) is not opposed by inward convection. The rate of loss of vorticity is 
likely to be even smaller than estimated above for the case /3 > 0, provided always that 
€4 1. 

t The mechanism should not be confused with the inviscid stripping mechanism that can act on 
elliptical vortices in two-dimensional straining flow (Dritschel 1989, 1990 ; Legras & Dritschel 1993). 
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6. Discussion 
In this paper we have obtained an asymptotic solution of the nonlinear equation 

describing a vortex of finite circulation r subject to a non-axisymmetric strain field. 
This solution is applicable in the limit R, = T/v+ co, and is valid for all values of the 
parameter h = (a -P)/(a + /3) representing the departure from axisymmetry in the 
strain field. 

For 0 < h < 1, the strain field is axial, with a < ,!I < 0. Previous numerical evidence 
(Robinson & Saffman 1984; K092) indicated the existence and structure of solutions 
of the governing equation (2.4) for particular values of the parameters R, and A. The 
great advantage of the asymptotic solution is that it is valid for arbitrary values of these 
parameters provided eh < 1 where E = l /Rp Moreover, the solution may be analysed 
in detail, to explain the rather complex structure of the field of viscous dissipation 
revealed by the computed solution of K092, and the manner in which this changes as 
Rr increases. The dissipation has been found to be located predominantly in the region 
of low enstrophy near the radius r / 6  = 2.67, and the correlation between dissipation 
and enstrophy fields has been found to be 0.19 + O(c2) for E < 1. 

The case h = 1 (j3 = 0 orplane strain) is of particular interest, as noted by Neu (1984) 
who developed a theory of unsteady vortex development for this case, with a view to 
explaining vortical structures (e.g. braids) in turbulent mixing layers (Lin & Corcos 
1984). The theory of the present paper is clearly applicable when h = 1, and provides 
detailed steady solutions for the persistent stretched braid-type vortices that are such 
a characteristic feature of free-shear-layer flows. 

The case h > 1 (p > 0 or biaxial strain) is also of great interest. A weak vortex 
aligned with the z-axis cannot possibly survive in the presence of such a strain field: the 
linearized solution (1.7) is available only when both a and /3 are negative. However, a 
strong enough vortex may well survive because its rapid rotation always tends to 
re-establish the circular cross-section, thus thwarting the disruptive tendency of the 
positive strain rate /3, although as explained in 95 an exceedingly slow decay of 
circulation is inevitable. With this reservation, the asymptotic solution that we have 
obtained is equally valid in the range 1 < h < 3 (corresponding to 0 > p < y). This 
may help to explain why vortices, once formed, are remarkably persistent; even if they 
move into an environment in which /3 > 0, they can continue to survive with a minor 
adjustment of structure, provided simply that 

Even if we move into the regime h > 3 (i.e. /3 > y), the asymptotic solution, with the 
vortex still aligned along the y-axis of strain, apparently still exits. However, if the 
vortex is disturbed away from this axis of strain, it will tend to rotate towards the larger 
(/3) axis of strain so that we revert to a situation 1 > A' > 3 with a revised ordering of 
(a, /3, y )  and A' = (a  -?)/(a + 7) .  We speculate that the vortex can still persist, but 
rotated through n/2 from its initial direction. This argument suggests moreover that 
if a, p and y vary continuously and not too rapidly with time, then the vortex must 
always tend to line up with an axis of positive rate of strain, this being the only stable 
configuration ; only in exceptional circumstances therefore could it find itself aligned 
with an axis of negative rate of strain (which could lead to its extinction). 

Thus it appears that, if and when strong vortices form through the well-understood 
vortex stretching mechanism, they have a good chance of surviving for a long time. A 
network of such sinews connecting and merging with regions of much weaker vorticity 
therefore provides an attractive starting point for the understanding of the fine-scale 
structure of turbulence. Further DNS investigations varying the threshold level of 
vorticity as well as rate of strain (see Tanaka & Kida 1993) for detection of vortex 

= h/R,  remains very small. 
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structures is desirable to identify any competing structures that may be responsible for 
the balance of viscous dissipation. 

This work was carried out while H. K. M. held a visiting appointment at the 
Research Institute for Mathematical Sciences (RIMS), Kyoto University. The kind 
hospitality of all at RIMS is gratefully acknowledged. 

Appendix A. The far field 

the strain field ( D I X , , ~ ~ ) ,  and we may therefore consider the linearized form of (2.6), 
As noted in 9 5 ,  for r >> ~-;6\, the induced velocity (uz, uy)  is negligible compared with 

aw aw 
ax ay 

a:x-+py- = W + V 2 W ,  

which must hold asymptotically, irrespective of the value of F (= l /Rr).  We have 
already noted the solution 

when a: < 0,P < 0 (i.e. (1.7) in dimensionless form). We now show that this is the 
unique solution of (A 1) of finite circulation, and that no such solution exists if ,8 > 0. 

Consider the initial-value problem for o(x, y ; t ) ,  

with 

aw aw aw 
-+ax-+py- = 0 + V 2 W ,  
at ax ay 

Equation (A 3) admits 'Kelvin mode' solutions (familiar from rapid distortion theory) 
of the form 

~ ( x ,  y ;  t )  = w(t) exp [ik(t) XI, (A 5)  

where 

and 

i.e. 1 (ePat - 1) + - kill (,-'at - 1) . 
2P 

The solution of the problem (A 3), (A 4) is given by a superposition of such Kelvin 
modes. Let 

r r  

The condition of finite circulation ensures that this Fourier transform exists; and (A 4) 
implies that 

4"(0,0) = (279-2. (A 10) 

Noting that 
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the required solution of (A 3), (A 4) is given by 
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ki2 
2P 

2P 

o(x,y ;  t) = cjo(kol,k,,)exp l)+-(e-'flt- l)]e"".dkO1dkO, ss 
= ~(O,(kle^L,k,e~t)exp 1 k2 

-eZzt)+2(1 -ezflt) eik'"dk,dk2. (A 12) 

If ct < 0 and p <  0, then as t - too ,  

w(x,y ;  t )  - / / r jo (O,O)exp[~+~]ezk~xdkldk ,  k2 k2 . 

= @ exp [+<ax, + pyz)] 
27c 

using (A 10). Hence (A 2) is a global attractor for solutions of (A 3) and is therefore 
the unique stable steady solution in this case. (There may conceivably exist unstable 
steady solutions that cannot be determined by this method.) 

If P > 0, then the form of the exponential factor in (A 12) makes it clear that there 
is no stable steady solution (with finite non-zero circulation). 

Appendix B. Determination of +,,,(r) from solvability condition at O(e3) 
Consideration of terms of order e3 in (2.7) gives the equation 

Here, $1, w1 and $, are given from (2.32), (2.33), (4.5) by 

$, = hf(r)sin20, w1 = hR(r)sin28, (B 2) 
$2 = h2$02(r) + hf2(r) cos 28 + h2f,(r) cos 48, (B 3) 

w2 = h2R02(r) + hR,(r) cos 28+ h2R2,(r) cos 419, (B 4) 

where Q,,(r) = - r-Yr$;J', (B 5) 

Q,(r) = -L,f,, Q 4 W  = -L4f4. (B 6) 

and we have then also 

Now the left-hand side of (B 1) (cf. (2.17), (4.1)) may be written as 

i a  
r a0 

- - - (w;$3+2)ow3).  

Each term on the right-hand side of (B 1) may be calculated explicitly. The solvability 
condition is obtained by integrating the equation from 8 = 0 to 8 = 27c. The left- 
hand side integrates to zero, and on the right-hand side we get contributions from 
-Lo Qo2(r) and also from terms involving the factor cos2 28 or sin2 28. The resulting 
equation for R,, is 

Lo Qo2 = - r-lSl(r), (B 8) 

where S(r) = tr2R, +f, Q - fR,. (B 9) 
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The right-hand side of (B 8) is O(r2) as r --f 0, and exponentially small as r --f 00. The 
function 9,, finite at r = 0, exponentially small as r + co, and satisfying the normalizing 
condition 1: rQ,,(r) dr = 0 (B 10) 

is then given by 

Then, 1Cr02(r) is given from (B 5 )  by 

We see therefore that there is a small modification to the @-averaged structure of the 
vortex at O(2h2) .  
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